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1 Introduction

Farkas’ Lemma: Given a matrix A ∈ Rm×n and a vector b ∈ Rm, exactly one
of the following two statements is true:

1. There exists a vector x ∈ Rn such that Ax = b and x ≥ 0.

2. There exists a vector y ∈ Rm such that AT y ≥ 0 and bT y < 0.

Farkas’ Lemma is a fundamental result in linear programming and optimiza-
tion. It simply states that for a given matrix A and vector b, exactly one of the
following statements is true:

If b ∈ cone(A), then there’s an x such that, Ax = b. If b /∈ cone(A), then there
exists a vector y such that AT y = b.

We aim to establish Farkas’ Lemma using basic linear algebra. Existing
proofs utilizing analysis, linear programming, and Fourier-Motzkin Elimina-
tion are complex and challenging for undergraduates to grasp, thereby limiting
accessibility for students conducting research using optimization or linear pro-
gramming.

1.1 Definitions

Cone: A set K ⊆ Rn is a cone if x ∈ K implies αx ∈ K for any scalar α ≥ 0.

Conic Hull: Given a set S, the conic hull of S, denoted by cone(S), is the
set of all conic combinations of the points in S, that is,

cone(S) =

{
n∑

i=1

αixi | αi ≥ 0, xi ∈ S

}
.
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Hyperplanes: A hyperplane ∂H of a vector space V is a subspace of V of
dim(n− 1). They can be described as the intersection of half-spaces:

∂H = H− ∩H+ = {y | aT y ≤ b, aT y ≥ b} = {y | aT y = b}

Where H− and H+ are halfspaces

A hyperplane is the solution set of a single linear equation of the form a ·x =
b, where a ∈ V is a nonzero, normal vector to ∂H, x is a vector variable in V ,
and b is a constant.

2 Separating Hyperplane Theorem

Theorem 1: Let C and D be two convex sets in Rn that do not intersect
(i.e., C ∩ D = ∅). Then, there exists a ∈ Rn, a ̸= 0, b ∈ R, such that:

aTx ≤ b ∀x ∈ C,

aTx ≥ b ∀x ∈ D.

Note: The hyperplane aTx = b with normal vector a separates the sets C and
D.

We note that neither inequality in the conclusion of Theorem 1 can be made
strict. Strict separation may not always be possible, even when both C and D
are closed. (An example could be added here to illustrate this point.) However,
if both sets are closed and at least one of them is compact, then the separation
can be strict, as stated in the following theorem:

Theorem 2: Let C and D be two closed convex sets in Rn with at least one
of them bounded, and assume C ∩D = ∅. Then there exist a ∈ Rn, a ̸= 0, and
b ∈ R such that:

aTx > b ∀x ∈ D,

aTx < b ∀x ∈ C.

( Do we need to proof this?)

Corollary 1: Let C ⊆ Rn be a closed convex set and x ∈ Rn a point not in C.
Then x and C can be strictly separated by a hyperplane.

Corollary 1 is a direct consequence of Theorem 2. If we consider the set C and
the singleton set {x}, where x /∈ C, the conditions of Theorem 2 are satisfied
because {x} is bounded and disjoint from C. Thus, there exists a hyperplane
that strictly separates x and C.
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Proof
Consider the set D = {x}, which is trivially a closed convex set and is bounded.
Since x /∈ C, we have C ∩D = ∅. By Theorem 2, there exist a ∈ Rn, a ̸= 0, and
b ∈ R such that:

aT y > b ∀y ∈ D,

aT z < b ∀z ∈ C.

Since D = {x}, the first condition simplifies to aTx > b. Hence, the hyperplane
aT z = b strictly separates the point x from the set C.

3 Farkas Lemma

3.1 Farkas’ Lemma Statement

Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following statements is
true:

1. There exists x ∈ Rn such that Ax = b and x ≥ 0.

2. There exists y ∈ Rm such that AT y ≥ 0 and bT y < 0.

3.2 Proof

3.2.1 1 −→ 2

This will be a proof by contradiction.

Suppose there exist x ∈ Rn such that Ax = b and x ≥ 0. Also, suppose
there exist y ∈ Rm such that AT y ≥ 0 and bT y < 0.

Since Ax = b,
(Ax)T = bT

xTAT = bT

xTAT y = bT y

Since x ≥ 0 and AT y ≥ 0, we know xTAT y ≥ 0.

However, we assumed bT y < 0, leading to a contradiction.

Therefore, if there exists x ∈ Rn such that Ax = b and x ≥ 0, then there
cannot exist y ∈ Rm such that AT y ≥ 0 and bT y < 0.
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3.2.2 2 −→ 1

Suppose there exists y ∈ Rm such that AT y ≥ 0 and bT y < 0.
Let a1, . . . , an be the columns of matrix A. Define the set S = {a1, . . . , an}.

We need to show that the conic hull of S, denoted by cone(S), is convex and
closed.

Convexity of cone(S)
To prove that cone(S) is convex, let x, y ∈ cone(S). Then there exist non-

negative scalars αi, βi such that:

x =

n∑
i=1

αiai, y =

n∑
i=1

βiai

For any λ ∈ [0, 1], consider:

λx+ (1− λ)y = λ

n∑
i=1

αiai + (1− λ)

n∑
i=1

βiai =

n∑
i=1

(λαi + (1− λ)βi)ai

Since λαi+(1−λ)βi ≥ 0 for all i, it follows that λx+(1−λ)y ∈ cone(S). Thus,
cone(S) is convex.

Closedness of cone(S)
To show that cone(S) is closed, consider a sequence {zk} in cone(S) that

converges to a point z̄. Each zk can be written as:

zk =

n∑
i=1

α(k)ai with α(k) ≥ 0

We need to show that z̄ ∈ cone(S).
Consider the following linear program:

min
α,z

∥z − z̄∥∞

s.t.

n∑
i=1

αiai = z,

αi ≥ 0

The objective function ∥z − z̄∥∞ is an infinity norm and is always non-
negative. For each zk, there exists α(k) such that the pair (zk, α(k)) is feasible
for the LP since zk ∈ cone(S).

As the sequence {zk} converges to z̄, the optimal value of the LP approaches
zero. Since LPs achieve their optimal values, it follows that z̄ ∈ cone(S).

In conclusion, since z̄ ∈ cone(S), cone(S) is closed. Thus, the set S =
cone{a1, . . . , an} is a closed convex set.
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Now we can use the Separating Hyperplane Theorem.

Given that b /∈ C by the assumption that the first condition is infeasible. By
Corollary 1, the point b and the set C can be strictly separated; i.e., there exist
y ∈ Rm, y ̸= 0, and r ∈ R such that:

yT z ≥ r ∀z ∈ C and yT b < r.

Since 0 ∈ C, we must have r ≤ 0. If r < 0, then there exists some z ∈ cone(S)
such that yT z < 0.

Since cone(S) is a cone, for any α ≥ 0, αz ∈ cone(S). Therefore, yT (αz) =
αyT z. If yT z < 0, then yT (αz) = αyT z can be made arbitrarily negative by
choosing a sufficiently large α. This contradicts the assumption that yT z ≥ r ≥
0 for all z ∈ cone(S).

Thus, r cannot be less than zero, so r must be zero. The new condition
becomes:

yT z ≥ 0 ∀z ∈ C and yT b < 0.

Since {a1, . . . , an} ⊆ C, we see that AT y ≥ 0.

Therefore, if there exists y ∈ Rm such that AT y ≥ 0 and bT y < 0, then there
cannot exist x ∈ Rn such that Ax = b and x ≥ 0.

This completes the proof of Farkas’ Lemma.

3.3 Connection to Hyperplane Separation Theorem

We will now understand Farkas’ lemma in the light of The Hyperplane Separa-
tion Theorem. Consider the set: C = {Ax | x ≥ 0}, a convex cone, which we
will denote by a semi-circle, as if you’re looking top-down:

y1

y2

P (x)y

∂H

Where y is a point outside of C, P (x) ∈ C is the closest point to y, and ∂H is
the hyperplane created by P (x)

The existence of P (x) follows from Weierstrass’ Theorem, which asserts that
optimization problems in Euclidean space with bounded and compact sets must
attain their minimum or maximum values. To find P (x), we want to minimize
∥y − x∥2 where x ∈ C and the minimum is attained at x = P (x).
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We denote the red vector by ηx = y−P (x) where it is outward-normal with
respect to H− and inward-normal with respect to H+. ∂H is the hyperplane
created by ηx: ⟨ηx, P (x)⟩ = 0. y lies in H− := ⟨ηx, P (x)⟩ ≤ 0.

The cone C is defined as follows:

C =

∞⋂
H+⊆C

H+

This implies C is composed of half-spaces. Moreover, by its definition, ∂H =
H− ∩H+. Hence, ∂H can only intersect C except at its border.

This concludes our comprehension of Farkas’ lemma in the context of hyper-
planes.

6


	Introduction
	Definitions

	Separating Hyperplane Theorem
	Farkas Lemma
	Farkas' Lemma Statement
	Proof
	1  2
	2  1

	Connection to Hyperplane Separation Theorem


