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Convexity & Subspaces
1. If a set C has two points, x and y, s.t. 

the points can be connected by a 
line, then C is convex iff the line is 
itself in C completely. Algebraically,

For any x,y ∈ C and λ ∈ [0,1], the point λx 
+ (1−λ)y is also in C

1. A subspace is an example of a 
convex set that includes the origin

Convex Set - Wikipedia

https://en.wikipedia.org/wiki/Convex_set


Hyperplanes
Hyperplanes are generalizations of a surface.

Examples: points in R, lines in R2, (n-1)-dimensional subspaces of Rn , 
etc.

Solution Spaces:

H- and H+ are halfspaces 
When b = 0:

1. Hyperplanes go through the origin, meaning they’re subspaces. 
2. The culmination of halfspaces form a convex set!



Cones & Positive Cones

Properties of cones:
1. Subcones: Subsets of a cone that themselves form a cone.
2. V+ is a Positive cone that contains the origin.



Examples of cones in E(2,2)

Definition: E2,2 = { (a, b, c, d): a + b = c + d }
This subspace of R4 consists of all tuples (a, b, c, d) where the sum of the first 
two coordinates equals the sum of the last two coordinates.

Dimension: 3 (since it is defined by one linear condition in a four-dimensional 
space).

Visualization: E2,2 is a hyperplane in R4, which geometrically represents a 
kind of "balanced" set of points where two pairs of coordinates offset each 
other.



Examples of a positive cone

Let’s consider E2 = { (x, y, z, w): x + y = z + w } which is a subspace of R4. 

This subspace has a basis {e1 := (1, 0, 1, 0), e2 := (0, 1, 0, 1), e3 := (0, 0, 1, −1)}. 

This gives a vector space isomorphism f : R3 → E2 given by f(a, b, c) = (a, b, 

a+c, b−c). Let’s consider the cone P ⊂ R3 given by P := f-1 (E2 ∩ R4+). 

Therefore P = {(a, b, c) : a ≥ 0, b ≥ 0, a + c ≥ 0, b − c ≥ 0}.



Examples of a quotient cone
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Positive linear maps

f: (V,V+)→(W,W+) between two ordered vector spaces with 
their respective cones V+ and W+ has the property that if x ∈
V+, then f (x) ∈ W+. In other words, the map preserves the 
positivity defined by the cones.

A linear map f is positive if and only if it maps extreme 
points of V+ to elements of W+.

Extreme points of a cone are akin to the "corners" or "edges" 
of the cone.



Liftability

We say a cone is extendable if it can be lifted.



Visualizing Cones
Ignoring the red vectors, what do 
you notice on the right? The 
collection of mappings form a cone

We’re interested in two cones: 
1. The positive cone
2. The extendable cone (subcone)

The extendable cone is a part of the 
positive cone (which is the collection 
of green and blue vectors)



Separation of Cones
On the right is a view of the cones from below

Our objective is to classify between 
extendable and nonextendable mappings. In 
other words, separating between the positive 
cone and the subcone.



Our Research
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Checking extendability is 
hard! Our goal is to find a 

way to make it easier. 



Pattern Recognition

Current Tasks

Tasks

Proving Classifiers

Visualization

Proving Conjectures

Distinguish between extendable and nonextendable mappings.

Investigating coplanar 
and colinearity within 
matrices

Finding constraints that 
classifiers abide by, and 
making more classifiers.

Proving conjectures about 
entanglement
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Linear Programming

Image credit:  https://realpython.com/linear-programming-python

objective

constraints



Linear Programming (cont.)

Image credit:  https://realpython.com/linear-programming-python

objective

constraints



Linear Programming (cont.)

Image credit:  https://realpython.com/linear-programming-python

objective

constraints



Linear Programming (cont.)

In our research, we used linear programming to

1. check if a mapping was extendable

2. check if our generated classifier classifies all mappings correctly



Classification

Image credit:  
https://paperswithcode.com/task/classification-1
https://machinelearningmastery.com/types-of-classification-in-machine-learning/ 



SVMs (Support Vector Machines)

Image credit:  Steve Henneke, Purdue University CS 373

Given a set of data points and 
the class of each point, SVMs 
are a type of machine learning 
model that find a classifier to 
separate the classes such 
that the distance of the closest 
points to the classifier in each 
class is maximized (a.k.a. 
maximized margin).



SVMs (Support Vector Machines)

Image credit:  Steve Henneke, Purdue University CS 373

S: training data set S = { (x1,y1), … , (xn,yn) }
x: feature vector x ∈ Rd

y: binary labels y {-1,1}



SVMs (cont.)

Given a set of data points and 
the class of each point, SVMs 
are a type of machine learning 
model that find a classifier to 
separate the classes such 
that the distance of the closest 
points to the classifier in each 
class is maximized (a.k.a. 
maximized margin).



SVMs (cont.)

Given a set of data points and 
the class of each point, SVMs 
are a type of machine learning 
model that find a classifier to 
separate the classes such 
that the distance of the closest 
points to the classifier in each 
class is maximized (a.k.a. 
maximized margin).



SVMs (cont.)

Given a set of data points and 
the class of each point, SVMs 
are a type of machine learning 
model that find a classifier to 
separate the classes such 
that the distance of the closest 
points to the classifier in each 
class is maximized (a.k.a. 
maximized margin).



SVMs (cont.)

Extendables

Nonextendables

Our data looks more like this*

1. Each data point represents a 
map that lies in the positive cone

2. Extendables and nonextendables 
are intermixed

3. Classifier goes through origin

(*except our data is in 16 dimensional space)



SVMs (cont.)

Extendables

Nonextendables

Our data looks more like this*

1. Each data point represents a 
map that lies in the positive cone

2. Extendables and nonextendables 
are intermixed

3. Classifier goes through origin

(*except our data is in 16 dimensional space)



SVMs (cont.)

Extendables

Nonextendables

Our data looks more like this*

1. Each data point represents a 
map that lies in the positive cone

2. Extendables and nonextendables 
are intermixed

3. Classifier goes through origin

(*except our data is in 16 dimensional space)



SVMs (cont.)

Extendables

Nonextendables

We used an SVM in our research 
to find classifiers that separate 
some nonextendables from all 
the extendables.

This kind of classifier helps us 
find properties of the mappings 
that determine extendability. 



CREDITS: This presentation template was created by Slidesgo, and 
includes icons by Flaticon, and infographics & images by Freepik

Thank You!
Do you have any questions?

Resources
● Convex Optimization Book
● Project Guide
● Project GitHub

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://web.stanford.edu/group/SOL/Books/0976401304.pdf
https://docs.google.com/document/d/1TUfcBNzSqa3OW8TWufIVz1TMENRcCtAPWqXohrkYaok/edit?usp=sharing
https://github.com/karim-sharkawy/Notions-of-Positivity-and-Complexity-in-Quantum-Information-Theory
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